Bethe Ansatz Solution for a Defect Particle in the Asymmetric Exclusion Process

نویسنده

  • M. R. Evans
چکیده

The asymmetric exclusion process on a ring in one-dimension is considered with a single defect particle. The steady state has previously been solved by a matrix product method. Here we use the Bethe ansatz to solve exactly for the long time limit behaviour of the generating function of the distance travelled by the defect particle. This allows us to recover steady state properties known from the matrix approach such as the velocity, and obtain new results such as the diffusion constant of the defect particle. In the case where the defect particle is a second class particle we determine the large deviation function and show that in a certain range the distribution of the distance travelled about the mean is Gaussian. Moreover the variance (diffusion constant) grows as L where L is the system size. This behaviour can be related to the superdiffusive spreading of excess mass fluctuations on an infinite system. In the case where the defect particle produces a shock, our expressions for the velocity and the diffusion constant coincide with those calculated previously for an infinite system by Ferrari and Fontes. February 1, 2008 Submitted to J. Phys. A: Math. Gen laboratoire associé aux Universités Paris 6 Paris 7 et au CNRS 1

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bethe ansatz and current distribution for the TASEP with particle-dependent hopping rates

Using the Bethe ansatz we obtain in a determinant form the exact solution of the master equation for the conditional probabilities of the totally asymmetric exclusion process with particle-dependent hopping rates on Z. From this we derive a determinant expression for the timeintegrated current for a step-function initial state.

متن کامل

Solvable reaction-diffusion processes without exclusion

For reaction-diffusion processes without exclusion, in which the particles can exist in the same site of a one-dimensional lattice, we study all the integrable models which can be obtained by imposing a boundary condition on the master equation of the asymmetric diffusion process. The annihilation process is also added. The Bethe ansatz solution and the exact N-particle conditional probabilitie...

متن کامل

Exact solution of a one-parameter family of asymmetric exclusion processes

We define a family of asymmetric processes for particles on a one-dimensional lattice, depending on a continuous parameter λ ∈ [0, 1], interpolating between the completely asymmetric processes [1] (for λ = 1 ) and the n = 1 drop-push models [2] (for λ = 0 ). For arbitrary λ, the model describes an exclusion process, in which a particle pushes its right neighbouring particles to the right, with ...

متن کامل

Exact Solution of the Master Equation for the Asymmetric Exclusion Process

Using the Bethe ansatz, we obtain the exact solution of the master equation for the totally asymmetric exclusion process on an infinite one-dimensional lattice. We derive explicit expressions for the conditional probabilities P (x1, . . . , xN ; t|y1, . . . , yN ; 0) of finding N particles on lattice sites x1, . . . , xN at time t with initial occupation y1, . . . , yN at time t = 0.

متن کامل

The Asymmetric Simple Exclusion Process : An Integrable Model for Non-Equilibrium Statistical Mechanics

The Asymmetric Simple Exclusion Process (ASEP) plays the role of a paradigm in NonEquilibrium Statistical Mechanics. We review exact results for the ASEP obtained by Bethe Ansatz and put emphasis on the algebraic properties of this model. The Bethe equations for the eigenvalues of the Markov Matrix of the ASEP are derived from the algebraic Bethe Ansatz. Using these equations we explain how to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999